

AFRL-IF-RS-TR-2002-66
Final Technical Report
April 2002

GENERALIZED VARIABLE-PRECISION FILTERS
FOR ADAPTIVE COMPUTING APPLICATIONS

USC/Information Sciences Institute

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J227

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-66 has been reviewed and is approved for publication.

APPROVED:

 CHISTOPHER FLYNN
 Project Engineer

 FOR THE DIRECTOR:

 MICHAEL TALBERT, Maj., USAF, Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
APRIL 2002

3. REPORT TYPE AND DATES COVERED
Final Apr 98 – Jul 01

4. TITLE AND SUBTITLE
GENERALIZED VARIABLE -PRECISION FILTERS FOR ADAPTIVE
COMPUTING APPLICATIONS

6. AUTHOR(S)
Robert Parker, Scott Stanberry and Raghu Rao

5. FUNDING NUMBERS
C - F30602-98-1-0154
PE - 62301E
PR -: D00T
TA - TC
WU - 04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
USC/Information Sciences Institute
4676 Admiralty Way
Marina Del Ray California 90992-6695

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 26 Electronic Parkway
Arlington Virginia 22203-1714 Rome New York 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-66

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: Christopher Flynn/IFTC/(315) 330-3249

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This effort addresses the challenge of bridging the gap between theory and practice by systematically developing
design and implementation strategies to apply the generalized mathematical formulation of variable precision filters to
configurable devices in adaptive computing machines. This effort will deliver a computer-aided design environment,
based on commercial product that supports the design of variable precision filters for a given signal processing
application as well as their implementation in an adaptive computing platform

15. NUMBER OF PAGES
62

14. SUBJECT TERMS
Factored FIR Filters, Subsampled FIR Filters, IIR Filter, Approximation, Adaptive
Computing, FIR, IIR, Filters, Adaptive, DSPCanvas

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

TABLE OF CONTENTS

Summary. .1

Introduction .2

Methods, Assumptions and Procedures. 2

Results and Discussion. 3

Conclusion . 7

References . 7

Appendix A- Factored FIR Filter Theory. 8

Appendix B – Sub-sampled Factored FIR Filter Theory26

Appendix C – Filter Design Tools .29

1

Summary
This research project was aimed at investigating the applicability of a new filter design
technique invented by Dr. Beylkin at University of Colorado to develop a design
automation tool for implementing filters in adaptive computing systems (ACS) using
FPGA devices. Angeles Design Systems provided the design automation environment
and USC/ISI provided the adaptive computing testbed for testing the filter designs.
USC/ISI also provided overall project management.

In the first year, Angeles carried out several experiments with filters designed by
Colorado to evaluate the cost of these filters in ACS devices. USC/ISI provided the basis
for the cost calculations. Angeles used their automated optimization tools to calculate the
cost of the hardware-optimized designs. It was determined that the filters designed with
the existing Colorado techniques (Appendix A) did not reduce the cost compared to
conventional filter designs. The results of the Angeles experiments indicated that the
Colorado technique was reducing the computational cost significantly but increased the
memory cost in ACS systems. This is because in ACS devices, USC/ISI research
indicated that memory cost dominates.

In response to the above results, in the second year Colorado further developed the theory
and created the “sub-sampling” factored FIR filter design technique (Appendix B).
Experiments conducted by Angeles using their design automation environment
(DSPCanvas) indicated that this new technique yields the same computational cost
reductions as the original technique and dramatically lowered the memory costs. As an
example, a stringent filter required in radar system at MIT Lincoln Labs was used as
benchmark. It was found that the new technique developed under this program yielded a
70% overall cost reduction for the radar filter compared to conventional filter design
techniques (see results section in this report). USC/ISI researched applications and
identified the Radar filter for benchmarking.

In the third year, Colorado provided support for integration of their filter design software
with Angeles design automation environment. Angeles developed the ACS (FPGA)
design generator (in VHDL) to translate the filter design to actual hardware
implementation. Angeles experimented with different ACS based architectures to
determine the lowest cost memory implementation. USC/ISI carried out testing of the
hardware designs on their ACS platform to validate the design automation tools.

2

Introduction
Filters form a substantial part of many defense signal-processing systems such as radar
receivers. Due to changing system requirements (depending on the theater of operation)
the filter designs need to be frequently changed. Manufacturing new hardware for every
new requirement is an expensive proposition and also limits the military’s agility to
change the system in the field. ACS technology developed at USC/ISI allows the same
hardware to be reprogrammed in the field for different filter functions` thus eliminating
new hardware costs and delays in deployment. ACS hardware, however, requires filter
design techniques that reduce the cost (size) of the filter computations and memory
requirements to allow implementation in ACS devices. Angeles Design Systems has
commercial DSP design tools that allow optimization of filters for target hardware.

To leverage ACS filter implementation for DoD applications USC/ISI, Colorado and
Angeles partnered on this project to develop and implement a filter design tool that
allows the resulting filter hardware to be implemented in ACS devices.

Methods, Assumptions and Procedures

Methods:

1. Sub-sampling (Appendix A)),
2. System Solve for cost analysis and hardware optimization (ref web site),
3. USC/ISI ACS platform

Assumptions:

1. Target technology is ACS devices
2. Filter designs requirements can be expressed by frequency response and SNR

specifications
3. System stability requires polynomial filters

Procedures:

1. Identified benchmark
2. Experimented with conventional technique and proposed techniques
3. Evaluated results using actual ACS hardware parameters
4. Developed new techniques based on experimental results to achieve goal of cost

reduction, while maintaining automation of design techniques.

3

Results and Discussion

The benchmark radar receiver filter represents extremely stringent requirement, which
usually result in high precision computational hardware thus driving up cost.

The new techniques developed under this program not only provide 70% cost reduction
compared to conventional techniques but also better performance Signal to Noise Ratio
(SNR). This is due to reduced precision required in the proposed filter function compared
to conventional filters to achieve the same performance.

A key reason for the success of this project was the ability of USC/ISI and Angeles to
utilize real world hardware knowledge and design tools to pinpoint that source of costs in
the filter design and Colorado’ ability to develop a technique specifically minimizing
these costs while creating a fully automated design procedure.

The radar front-end filter (obtained from MIT Lincoln Labs) is used for converting real ADC
data into in-phase and quadrature radar samples in the IF stage of the receiver. This requires I
and Q channel filters for conversion from IF to baseband.

The filter specs to accomplish this are given below:

•Input Signal bandwidth: 250 kHz centered at 2.5 MHz

•IF Input Sample Rate from ADC: 10 MHz sampling.

•Output baseband sample rate: 625 kHz (decimation by 8 in each filter)

•Passband cut-off (for each filter): 125 kHz

•Stopband edge (for each filter): 312.5 kHz

•Stopband attenuation: 90 dB

The same filter was designed using 3 different algorithms, with responses and costs as shown
below. Note that the sub-sampled factored FIR filter developed on this project costs 33% of
the conventional filter design currently used in the radar front end, while providing superior
attenuation and SNR performance. The design and implementation of this filter in ACS
devices (FPGAs) has been fully automated as described in Appendix C.

4

.

150th order conventional FIR filter frequency response

5

6

FIR Filter Cost/Performance:

Design Attenuatio
n

SNR Coefficien
t Precision

Datapath
Precisio
n

Cost

Optimized -90.4471 91.1
dB

<20, 20,
7>

<20, 20> 9608.
5

Factored FIR Cost/Performance:

Cost Attenuatio
n

SNR Coefficien
t Precision

Datapath
Precisio
n

Taps

6916.2 -99.1365 54.2
7 dB

FIR
<30, 30,
8>

Factored
fir
<40,22,5>

<40, 40> 80

Sub-sampled factored FIR Cost/Performance:

Cost Attenua
tion

SNR Coefficient Precision Datapath
Precision

Factors

 Fac fir 4: 25, 8, 4

Fir : 36, 31, 8

Fac fir 0: 8, 4, 1

Fac fir 1: 4, 2, 1

3154.55 -118.54 116.4
dB

Fac fir 2: 4, 2, 1

35, 33 Taps 0 = 8
Taps 1 = 8
Taps 2 = 8
Taps 3 = 8
Taps 4 = 35

7

Conclusions
In conclusion, the research objectives of developing an automated filter design technique
for low-cost ACS implementation, was achieved. Colorado developed a new theory as
well as computer program. Angeles integrated the Colorado design program in to their
commercial design environment and developed cost calculation tools and hardware
generation tools specifically for ACS implementation. USC/ISI provided the ACS
expertise and knowledge base and carried out the final demonstration of the project.

A key impact of this project was the combination of theory (Colorado), practical design
tools (Angeles) and actual hardware prototyping (ISI). Based on the tools and hardware
feedback, the original theory was modified to develop a completely new type of filter
structure, which is well suited for ACS implementation and provides substantial
advantages over conventional filter structures.

In the above project the filter theory was advanced to ensure reduction of the memory
requirements in the ACS device. A future project could aim at further advancing the filter
theory so that the coefficients are optimized to be closer to values that reduce the ACS
hardware requirements.

Other techniques to reduce filter complexity generically reduce the total computational
needs. This may not however reduce actual hardware as established in the above project.
The uniqueness of this project lies in the fact that the actual factors affecting ACS
hardware complexity were first identified and then the filter theory was developed to
minimize these factors. This has led to the most powerful ACS filter design approach.

References
See appendices A, B, and C.

8

 Appendix A

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Appendix B

Technical Report

Generalized Variable Precision Filters

for Adaptive Computing Applications 1

Theoretical background for the implementation

of factored FIR approximation of IIR filters

Gregory Beylkin and Lucas Monzón

June 6, 1999. Revised October 15, 1999

Introduction

A great variety of digital filters can be readily designed as Infinite Impulse Response (IIR) filters.
These IIR filters are typically implemented via recursive algorithms or by approximations using Finite
Impulse Response (FIR) filters. In the latter case, we are interested in approximating the frequency
response function of the IIR filter, a rational function, by the frequency response function of an FIR filter, a
polynomial function. One standard approach is to find the FIR filter by some optimization over fixed
degree polynomials.

In our approach (see [1]), the degree of the polynomial approximation is not fixed. Instead, an
efficient and accurate implementation is achieved by representing the approximating
solution as a cascade of very simple FIR filters. The degree of the approximating
polynomial could be high to obtain the precision sought although the cascade
representation induces a relatively small number of operations. The number of factors in
the cascade depends on the accuracy sought and is not very large. Higher accuracy can
be obtained by adding extra factors to the representation. Thus, depending on the desired
precision on the filter output, one can uniquely specify the number of factors in the
cascade. Hardware efficiency come from the fact that only the minimum required factors
are computed.

We note that if this technique is applied to IIR Quadrature Mirror Filters, we obtain a FIR filter
that satisfies the quadrature mirror condition with any desir1ed accuracy.

Let us now describe the FIR approximation.

Given any IIR filter () ()
()zQ
zP

zH = , where P and Q are polynomials, the FIR approximation F(z)

can be written as

 () () ()k

zFzF
n

k
k

2

0
∏

=

= (1)

where each F(k) (z) is a polynomial. In particular,

() () () ()zQzPzF −=0

and, for k > 0, the degree of F (k) (z) is at most the degree of Q(z).

1 DARPA grant F30602-98-1-0154

27

Implementation reducing memory requirements

Even though each factor F(k)(z) in (1) is itself a cascade of 3-tap FIR filters, there are large delays

in the factors ()()k

zF k
2 which significantly increases the cost of memory. Nevertheless, if the output of

applying the filter F(z) is bandlimited, we can use a subsampled version of F(z) which drastically reduces

the memory cost.

Subsampling design

Let X(z) be the z-transform of a sequence {xk}, i.e.

 () ∑
∈

=
Zk

k
k zxzX (2)

Let us denote by X0, X1 the polyphase components of X(z),

 () ∑=
k

k
k zxzX 20 (3)

 () ∑ +=
k

k
k zxzX 121 (4)

The operator 2? stands for subsampling by two, that is, it does retain only the even entries of the
sequence:

 2?:{xk}? { x2k }.

We want to apply a filter A(z2) to a signal X(z) and then subsample the result. Let us call Y(z) the
result of these two operations:

 Y(z) = 2?(A(z2)X(z)).

We note that it is possible to reverse the order of the operations. Namely, we can first subsample
the signal and then apply the filter A(z),

 2?(A(z2)X(z))=A(z)(2? X(z)), (5)

where the order of operations is indicated by parenthesis.

We now show how this observation is applicable to FIR cascades.

Implementation of subsampled factored FIR approximation

If the output Y(z), Y(z) = F(z)X(z) is band-limited then, it can be subsampled. To illustrate the
situation suppose that Y is subsampled by a factor of eight and that the filter F consists of five factors, that
is n = 4 in equation (1).

 We can compute Y~ , the subsampled version of Y, using the discussion above. Each step of

subsampling changes the application of a filter ()()k

zF k
2 to application of () ()12 −k

zF k .

In this example, we obtain (operations are applied from left to right)

 () ()() ()() ()() ()() ()() ()zXzFzFzFzFzFzY 0
2

1
4

2
8

3
16

4222
~

↓↓↓= (6)

 ()() ()() ()() ()() ()() ()zXzFzFzFzFzF 0123
2

4 222 ↓↓↓= (7)

Clearly, there is a substantial improvement in using (7) instead of (6) for the computation of Y~ .
After applying F(0) , at each stage the result is subsampled by a factor of two with the corresponding savings

(3)

(4)

28

in memory. The memory requirement is dictated by the power of z in the argument of F(k) and that power is
reduced in all factors.

If Y~ is the answer we are seeking, the computations can be stopped at this stage. If instead we

are interested in Y , we can first compute Y~ and then upsample it to obtain Y.

We now discuss further improvements.

Faster implementation of some factors

By construction, the higher the value of k, the smaller the length of F(k)(z) and also the smaller the
absolute value of some of its coefficients. This indicates that an additional saving can be achieved if we
expand these factors F(k) to obtain their coefficients rather than to keep them in a factored form. For those
factors we discard all coefficients below the target accuracy. This direct implementation is faster than
applying them as a cascade.

Other possible subsampling

The procedure described above is not limited to the particular way in which subsampling is
achieved in (7). Any linear combination of the polyphase components could be used. Specifically, with
the notation of (3) and (4), any operator of the form

 () () () () ()zXzSzXzRzX 10 +→ (8)

where R and S are any function, can be used instead of 2? . For example, if we use the Haar filter

2
1 z+

to decompose a signal into its low and high components, the low component corresponds to

choosing R(z) = S(z) =1/2 in (8).

 [1] G. BEYLKIN, On factored FIR approximation of IIR filters, Applied and Computational Harmonic
Analysis, 2, pp. 293-298, 1995.

29

Appendix C

Filter Design Tool and Architecture

1. Design Methodology
The design process (fig. 1) starts with a filter specification. The filter specification depends on the
application and typically includes a frequency response characteristic and desired windowing method.
The optimization process is based on DSPCanvas. The optimization constraints are the SNR (signal to
quantization noise), the passband ripple, and the stop band attenuation. The target technology
determines the hardware cost to implement the filter. The filter is then optimized for finite precision
arithmetic, using cost functions specifically geared towards optimizing for the target technology. A
VHDL generator is available to generate the filter automatically using the optimized finite precision
results. A seamless flow is available to put the filter on hardware.

Filter
Specifications

Matlab

Ref IIR Filter
coefficients

Factored
Filter Program

DSP Canvas
Simulation

FIR Filter
coefficients

Factored
FIR

“C” Model

ACS Cost
function

Finite-precision
Optimization

DSP Canvas
VHDL generation

VHDL
Synthesis

VHDL
Simulation

Place
and route

FPGA
bitstream

Timing analysis
and verification

HARDWARE

Filter
Specifications

Matlab

Ref IIR Filter
coefficients

Factored
Filter Program

DSP Canvas
Simulation

FIR Filter
coefficients

Factored
FIR

“C” Model

ACS Cost
function

Finite-precision
Optimization

DSP Canvas
VHDL generation

VHDL
Synthesis

VHDL
Simulation

Place
and route

FPGA
bitstream

Timing analysis
and verification

DSP Canvas
VHDL generation

VHDL
Synthesis

VHDL
Simulation

Place
and route

FPGA
bitstream

Timing analysis
and verification

HARDWARE

Figure 1 Design Flow

2. FIR Filter Design
The relationship between the FIR filter’s input sequence x(n) and its output y(n) is

() ()∑
−

=

−=
1

0

N

k
k knxbny

30

with N representing the number of coefficients in the filter. A structure directly derived from this
relationship is shown in Figure where the in-line triangles represent a multiplication by a coefficient bk.
Choosing these coefficient values is accomplished through standard filter design techniques.

z-1 z-1 z-1

...
+ + +

x(n)

y(n)

Figure 2 FIR Filter

There are several ways of designing and implementing a FIR filter in DSP Canvas. One convenient
method is to use the Matlab engine interface via a Matlab model in a DSP Canvas schematic. Using
this model, one can specify a desired piecewise linear frequency response, type of filter, and the
number of filter coefficients, as illustrated in Figure . Alternatively, a filter may be designed outside of
DSP Canvas, and DSP Canvas simply loads a vector of coefficients from a data file into a standard FIR
filter model.

Figure 3 Filter specification for Matlab

3. Optimization Strategy
The goal of the optimization process is to find the lowest cost solution that meets the filter design
constraints. The three components of the filter optimization system are:

• Filter and architecture parameters

• Filter design constraints

• Cost function

In general, the filter parameters (such as coefficient quantization width) determine the architectural
parameters (such as datapath precision), which results in a certain implementation cost. As the filter

31

parameters are varied, the filter constraints must be checked to ensure that the filter satisfies its design
specification.

3.1 FIR Filter Parameters
 There are four classes of parameters for FIR filters:

• Input encoding

• Coefficient encoding

• Accumulator encoding

• Output Encoding

For the multiply-accumulate operations in Figure , consider a 2’s complement. In DSP Canvas, the
precision of 2’s complement numbers is represented as the pair <w,d>, where:

<w> is the total number of bits

d defines the location of binary point at <d> bits to the left of the LSB i.e. the LSB has a value
d−2

Using this definition, the smallest non-zero value in magnitude is d−2 , the greatest positive value is

() dw −− ⋅− 212 1 , and the greatest negative value is dw −− ⋅− 22 1 .

Assume that the coefficients are encoded using canonical signed digit (CSD), where each digit
may be a 1, 0, or –1. For example, the 2’s complement representation of decimal 7 is 0111, whereas

the CSD representation is 100 1 (-1 is represented by the symbol 1). Note that a CSD-encoded
number evaluates to the same value as a 2’s complement encoded number.

In DSP Canvas, CSD numbers are represented as <w,d,nz>. The third parameter nz
represents the maximum number of non-zero digits allotted for a number, and its range is limited to

2
0

w
nz ≤≤ . Note that there is some degree of quantization if

2
w

nz < .

Thus, in total there are 5 parameters that can be varied while satisfying the filter specifications:

Coefficient encoding: w, d, and nz, i.e. coefficient<w,d,nz>

Accumulator encoding: w and d, i.e. accumulator<w,d>

The dialog box in Figure illustrates the entry of these five parameters in DSPCanvas. The designer can
manually change these parameters to optimize them or use the scripts described in this note to
automatically search for optimal values.

32

Figure 4 Filter Optimization Parameters

Lastly, the encoding of the input and output values depends on the system requirements of the
application (e.g. A/D resolution), and thus are not varied by the optimization script.

3.2 Architectural Parameters
This project uses a shift-add accumulate architecture (fig. 4) for the FIR filter.

memory

barrel shifter

register

accumulator

Figure 5 Shift-Add Architecture

The memory is used to store input samples of the filter. The width of the memory is determined by the
input precision, whereas the width of the datapath (i.e. shifter, accumulator and register) is determined
by the coefficient precision and input precision. While the ideal datapath precision is the sum of the
coefficient width and input width, a lower precision may satisfy the specifications and can be obtained
using the scripts described in this note.

33

In a shift-and-add architecture, each non-zero digit in a coefficient requires one cycle of processing.
Thus, while the CSD encoding of coefficients introduces quantization error into the filter, it reduces the
number of cycles (cycle count) required to compute each sample. Minimizing the maximum number of
non-zero bits allows for a convenient tradeoff between the cycle count and the frequency response.

The two architectural parameters, namely datapath width and cycle count, are necessarily a function of
the filter parameters. This function defines the cost of the filter as discussed below.

3.3 Cost Function
The goal of optimization is to minimize a particular design’s “cost”, which is provided by a cost function.
A cost function appropriate for the shift-and-add architecture is








 ×
×+=

frequency system
count cycle

cost arithmeticcostmemory cost rearchitectu sf

where “memory cost” is the cost of memory, “arithmetic cost” is the cost of one shift-add datapath in
Figure . The ceiling operation provides an integer number representing the number of parallel
datapaths required to meet the filter’s sample rate requirement, given the underlying technology’s
circuit speed. fs is the desired sample rate, “cycle count” is number of shift-add cycles required, and
“system frequency” is the clock rate of the datapath (i.e., number of cycles executed in one second).
These multiple datapaths share one memory unit, as is reflected in the cost function. The illustration in
Figure shows the dependencies of the cost on the architectural parameters (cycle count and datapath
width), and in turn their dependence on the filter parameters (w, d, nz). The filter parameters are
determined by the specifications. The cost function can be symbolically specified in DSPCanvas or in a
C program (depending on the complexity) as discussed in another section of the tutorial document.

of cycles

 δ1

SNR

memory
cost

arithmetic
cost

datapath
width

architecture cost

coefficient
w, d, nz

accumulator
w, d

 δ2

Figure 6 Cost calculation for FIR structure

3.4 Filter Constraints
There are several specifications from traditional FIR filter design that are used as constraints in the
optimization process. Clearly one would like to ensure that the filter specifications are satisfied when

34

optimizing the design. Refer to the frequency response curve in Figure , typical for a low-pass filter.
The filter’s passband extends from 0 to f1 Hz, whereas the stopband begins at f2 Hz.

A
m

pl
itu

de

Frequency

f2

1

f1

1-δ1

δ2

Figure 7 Filter Constraints

The ripple in the passband is measured to be δ1 dB, and the filter’s attenuation at f2 Hz is δ2 dB. We
use δ1 and δ2 as constraints in the optimization script. Although simplified for some filter applications,
using these two specifications as design constraints is applicable for most low and high-pass filters.

Furthermore, there is a relationship between the accumulator bit-width and the quality of the filter’s
response. As the precision of the accumulator in a shift-and-add architecture is reduced, the response
deviates from a purely floating-point system; this deviation is modeled as noise in the system response.
Thus, when a finite precision accumulator is introduced, we measure the signal-to-noise ratio (SNR) of
the finite precision filter response yfinite relative to a floating-point design yref :

()
()()2

2

log10SNR
finiteref

ref

yyE

yE

−
=

Figure 8 SNR Speciciation

The next section describes how the frequency specifications and SNR constraints are described in the
optimization scripts in DSPCanvas

4. Optimization Tool in DSP Canvas
The five optimization variables noted in Figure create a five-dimensional space, over which one is to
find a minimum cost solution. In order to reduce the search time, we adopt a two-step optimization
strategy, taking advantage of certain theoretical facts to partition the search. The filter specifications of
passband ripple and stopband attenuation are affected only by how the coefficients are encoded,
whereas the SNR is affected by the accumulator.

The optimization script is shown in Figure , where there are two multivariate optimization loops.

35

In the first loop of the optimization script, the coefficient parameters are varied, while the accumulator
remains floating point; each time the coefficient’s encoding is changed, the filter’s passband ripple and
stopband attenuation are checked to ensure they meet specifications. Once minimum cost coefficients
are discovered, the script advances to the second loop where the accumulator precision is varied and
the SNR is measured relative to the original floating point design. The two loops are described below.

Figure 9 Optimization script

4.1 Fixed Point Coefficient Optimization
The first loop of the script repeatedly simulates the filter for different combinations of coefficient
encoding and checks whether the frequency response satisfies the specifications, while calculating the
cost.

The variables (fig. 10) ripple and atten correspond to the filter specifications of δ1 and δ2,
respectively. These variables are used in the optimization block as constraints, as is illustrated in
Figure . The optimization script uses the search space defined by the ranges of the loop variables. In
Figure these are listed as b_fir, b_fir_prec, and b_fir_nz; these variables correspond to the
three parameters in coefficient<w,d,nz>. Note that the cost function is specified as an
externally defined function. In this case it is a C function named “cost_fir”, which takes the filter
parameters from the command-line input, formulates the architectural parameters of datapath_width
and cycle_count, and returns an architectural cost.

36

Figure 10 Optimization Dialog Box

The simulation schematic used in the loop for coefficient optimization is shown in Figure 11. As
illustrated, the impulse response of the filter is being measured. The parameters
coefficient<w,d,nz> are varied and passed to this schematic from the optimization script; note
that the input and accumulator of the filter are specified to be floating point. Once simulated, the
frequency and phase response are stored in data files. The optimization script uses the “set” block to
calculate the resulting passband ripple and stopband attenuation to check if the constraints are
satisfied. To do this, the “set” block in the script reads the frequency response data files (using the
”get_col_op” function) and performs the following computations using “jet_set_eval” commands:

w1=floor(fft_length*f1)

w2=ceil(fft_length*f2+1)

max_ripple=max(filter response in passband)

min_ripple=min(filter response in passband)

ripple=max_ripple-min_ripple

atten_sb=(filter response at w2)

atten=atten_sb-min_ripple

37

Figure 11 Optimization Schematic

4.2 Fixed Point Accumulator Optimization
Once the first loop has finished, the best combination of coefficient<w,d,nz> is fixed and the
script moves on to the second loop (the bottom half of the script in Figure).

Figure 12 SNR Optimization Dalog Box

38

The optimization settings for this loop are illustrated in Figure . Note that the accumulator encoding
settings are now the loop variables, and the SNR is the constraint. To calculate the SNR, the second
loop simulates the schemat ic in Figure .

The strategy of this schematic is to investigate finite precision effects by comparing the performance of
a filter with a fixed-point datapath versus a filter with a floating point datapath. As illustrated, there are
two filters being used. The bottom filter is a complete fixed-point FIR filter, where the
coefficient<w,d,nz> encoding is the determined in the first loop, and the accumulator encoding is
varied by the second loop. Furthermore, the input and output precisions of the filter are specified. The
FIR filter in the upper portion of the figure differs only in that the accumulator is floating point; this is
termed the “reference” filter. A single sinusoid centered in the filter’s passband is used as input
stimulus to the two filters, and the resulting SNR is measured and passed back to the optimization
script. This value is used as the SNR constraint in Figure . As in the first loop, the external cost
function is called to provide the architectural cost of the system.

Figure 13 SNR Optimization schematic

Once the second loop has finished, optimal values of all parameters are determined and the
optimization script terminates.

5. Factored FIR filter design
A factored FIR approximation of IIR is an alternative implementation of an IIR filter. A factored
FIR approximation for the IIR filter described above is generated using the Colorado design
software. This single stage filter contains 40 factors (maximum delay 2048). IIR filters are
inherently unstable in fixed precision mode. This is a method to stabilize the IIR filter with very
little extra cost, at the same time, preserving the sharp cutoff features of the IIR filter.
The factored FIR filter has a transfer function as follows:

Figure 15 shows the structure for the factored FIR filter.

∏ −− ++=
i

Q
i

P
ii

ii zczbazPzH)()()(

39

ripple

SNR

arithmetic
width

architecture cost

numerator
encoding

acaccumulator
encoding

of delays

factors
encoding

of factors

attenuation

of cycles

memory
cost

arithmetic
cost

ripple

SNR

arithmetic
width

architecture cost

numerator
encoding

acaccumulator
encoding

of delays

factors
encoding

of factors

attenuation

of cycles

memory
cost

arithmetic
cost

Figure 14 Factored FIR Cost Calculation

P(z) has the same parameters as a conventional Fir filter. However, the cascaded factors present
additional parameters for optimization. The factored FIR filter has a very high cost of memory. Even
though the arithmetic units are reduced the memory cost shoots up. Each of the factors are essentially
a 3-tap FIR filter, but the delays between the taps are variable. Pi and Qi are generally much greater
than 1. This essentially increases the cost of memory, especially when using FPGA architectures that
do not have dedicated memory elements like Xilinx 4000. However, architectures such as the Xilinx
Virtex devices may be much more efficient, since they have embedded memory elements. Figure 14
shows the cost calculation for the factored FIR structure.

number of
taps

Filter Length

+ +

.
factor i+1

z-P z-Q

+ +

x(n)

Coefficient
Encoding

factor i

a b c

Accumulator
Encoding number of

taps

Filter Length

+ +

.
factor i+1factor i+1

z-P z-Q

+ +

x(n)

Coefficient
Encoding

factor ifactor i

a b c

Accumulator
Encoding

Figure 15 Factored FIR structure

40

5.1 Sub-sampled factored FIR
The factored FIR filter has a very high cost of memory. To reduce the cost of memory the sub-sampled
factored FIR filter(fig. 16) was developed on this project. This preserves all the good features of the
factored FIR filter, at the same time reducing the cost of memory.

Single Stage Filter

Filter
Stage 1

5 MHz 625 KHz

5 MHz
2.5
MHz

1.25
MHz

625
KHz

Filter
Stage 3

Filter
Stage 2

Single Stage Filter

Filter
Stage 1

5 MHz 625 KHz

5 MHz
2.5
MHz

1.25
MHz

625
KHz

Filter
Stage 3

Filter
Stage 2

Figure 16 Sub-sampled Factored FIR Strcuture

An additional degree of freedom in optimization is the number of factors used. As an example, if a
single stage requires 40 factors with maximum storage of 512, then a sub-sampling multistage might
require, in the worst-case, 24 factors with maximum storage of 128. Factors with large storage have
small coefficients and the optimization tool exploits this by dropping factors in order of increasing value
of coefficients.

 5.2 COST COMPARISION PLOTS
As shown in figures 17-22, the sub-sampled factored FIR filter design, developed on this
project, offers a significant cost reduction (fig.19), while providing superior performance
(figures 21-22).

0
5

10
15
20
25
30
35
40
45

Coeff word Acc word

FIR

IIR

Factored FIR

Subsampled Factored FIR

Figure 17 Sub-sampled Factored FIR requires lowest coefficient precision

Precision

41

0

20

40

60

80

100

120

SNR

FIR

IIR

Factored FIR

Subsampled Factored FIR

Figure 18 Subsampled Filter has superior SNR performance

0

2000

4000

6000

8000

10000

12000

FIR Fact FIR SF FIR IIR

arith

cycles

memory

Figure 19 Subsampled Factored FIR offers lowest cost

0

5000

10000

15000

20000

Cost

FIR

IIR

Factored FIR

Subsampled
Factored FIR

Figure 20 Cost Break-down

42

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Normalized Frequency

M
ag

n
it

u
d

e
(d

B
)

FIR

IIR

Factored

Factored_sub

Figure 21 Frequency response comparison

Subsampled Factored FIR (0.18 dB)

-1.59E+02

-1.39E+02

-1.19E+02

-9.90E+01

-7.90E+01

-5.90E+01

-3.90E+01

-1.90E+01

1.00E+00

0 0.01 0.01 0.02 0.03 0.03 0.04 0.05 0.06 0.06

Normalized Frequency

M
ag

ni
tu

de
 (

dB
)

Subsampled Factored FIR

Subsampled Factored FIR
(Fixed Pt.)

Figure 22: Optimized fixed-point design versus Matlab floating point design

43

6. Computational Architecture Design for FPGA

This filter architecture (figures 23 and 24) is composed of storage elements implemented with dual port
rams, the product of the coefficients, implemented by barrel shifters and an accumulator, which
implements the addition. The filter receives samples at a rate of fs which is a multiple of the system
clock. Given the amount of computations that need to be performed, certain degree of parallelism is
necessary in order to achieve the desired sample rate.

...

y(n)

z-1z-1z-1 z-1

+ + +

Figure 23 FIR Structure

register

barrel shifter

memory

accumulator

Figure 24 RAM storage architecture

The RAM(figure 25) is used for the storage of the input data samples. The RAM used is dual port
synchronous. The RAM is 16 words deep, and the width is the same as the input sample word. The
ports for the RAM are write enable (WE), write address (A_W), read address (A_R), clock (CLK), input
data (D_IN), and output data (D_OUT).

44

In word width

D_OUT

D_IN

A_W

A_R

WE

CLK

16 taps

Figure 25 RAM Architecture

A multiplication can be implemented on binary numbers by shifting the binary number, multiplicand, by
the amount of the multiplier. This is implemented by the barrel shifter, which takes a control binary
number that indicates the amount of the shift. The inputs of the barrel shifter are the binary samples
input to the filter. The implementation of the barrel shifter is performed with rows of multiplexors (figure
26). The multiplexors are 4 to 1 and each row performs a 0 to 3 shift.

…

…
Sel

Sel

Figure 26 Barrel Shifter

Shifter based Transpose form:

The transpose form of the FIR filter based on shifts and add/sub also uses the CSD notation to
minimize the number of add/subs. For smaller filters (fewer taps) and for system_clock/sample_clock
ratios that are small, this architecture could perform better.

7. Storage Architecture Design

1. Arithmetic Units with RAM for storage of input words.

The RAM used in this architecture is a dual port RAM as shown below:

45

samples

bit

 N-1 N-2 N-3 0
 1

2

16

Memory and control logic cost calculation :

System clock to sample clock rate Fsys/Fs <= 16

Number of arithmetic units depends on the number of non-zero operations and on Fsys/Fs : nzops *
Fs/Fsys

For each RAM the cost of control logic is:

 4 bit counter for address read : 2 CLB’s @ Fsys

 4 bit counter for address write : 2 CLB’s @ Fs

 initial counter value : 2 + 2 CLB’s @ Fsys

 final counter value : 2 + 2 CLB’s @ Fsys

total for each AU : 12 CLB’s

2. Use of registers for storage of input words.

In this architecture (shown below) we store the input words on shift registers. Each arithmetic unit
accesses the relevant input sample using multiplexors.

46

bit

samples

• Cost of Memory
Each input is stored in one register bank. Each input needs to store N bits, corresponding to the width
of the input word. Two bits can be stored in one CLB.

Cost for one tap (CLBs): ceil [(input word width) / 2]
Total cost of memory: (number of taps) * {ceil [(input word width) / 2]}

• Cost of control logic:
The control logic needs to select the appropriate sample for each of the arithmetic units. The
architecture of this control logic is implemented with a series of multiplexors (figure 27).

- Number of Mux’s per AU depends on number of samples accessed.

Each CLB can hold up to one 4:1 Mux.
Average number of samples accessed/AU = (# taps * Fsys)/(Fs * nzops)
B=ceil[(tap*Fsys)/(4*nzops*Fs)]

Taps/AU Mux’s/AU

1 Wired, 0
<=4 B
<=16 B + 1
<= 28 B + 2
<= 40 B + 3

Table 1

- Control

Counter: Need only one counter for all AUs
ceil [log2(Fsys/Fs)/2]

47

Controls for multiplexors:
 Each 4:1 Mux needs 2 control signals: 1CLB
 For each AU need: ceil [Fsys/(16*Fs)]
 Total cost of control: ceil [Fsys/(16*Fs)] * (number of Mux’s)

• Total Cost:





++⋅+= AU

AU
Mux

Mux
controls

counterAUAUMuxtMemorytTotal][)]()/[(]cos_[cos_

()








+

















⋅
+⋅







 ⋅
⋅
































+








⋅

⋅
+






 ⋅

=

2
/log

16
12

1
0

42
cos_

2 FsFsys
ceil

Fs
Fsys

ceil
Fsys

nzopsFs
Fsnzops

Fsystap
ceil

inwordtap
ceiltTotal

Μ

where,



















Μ
2
1
0

 represents the number of multiplexors for the corresponding number of

samples/AU as shown in Table 1.

Figure 27 Multiplexor architecture to select coefficients

 7.1 Architecture Comparison Plots
To select the optimial storage architecture the cost of each srcuture was plotted as shown
below (figures 28-38) for various fixed precision parameter values. Each figure has four
plots:

Upper Left Plot (UL):

48

 Shows the cost of memory and associated logic for RAM based architecture and
Register based architecture. The red line is for the RAM and blue is for the register-based
architecture.

Upper Right Plot (UR):
 Shows the total cost of memory, control logic and arithmetic unit (accumulator),
for the RAM and register architectures.

Bottom Left Plot (BL):
Shows the cost of registers and access logic. For this plot blue for 1 non-zero ops/tap,
green for 2 non-zero ops/tap, red 3 non-zero ops/tap, and light blue 4 non-zero ops/tap.

Bottom Right Plot (BR):
 Shows the total cost for all 3 architectures. The RAM based in red, the register
based in blue and the transpose form in light blue asterisk lines.

Notes:

The plots for the RAM configuration show an increase in discrete steps. These steps
correspond to the frequency ratio fr = fsystem/fsample. In 1 sample clock cycle, we can
operate on fr non-zero bits of the coefficients. If the ratio increases, we will need
fewer RAMS. If the ratio decreases we will need more RAMS. On each RAM we can
buffer 16 input samples. As the ratio increases the discretization increases linearly.

For the plot displaying the register configuration we notice that with an increase of
the number of non-zero operations the curves do not increase linearly. This is due to
the discretization performed by ceil(A) operation, which rounds up the value A to the
next integer. From the cost function for registers we have the term








 ⋅
⋅








⋅

⋅
Fsys

nzopsFs
Fsnzops

Fsystap
ceil

4
, which accounts for this trend. For a fixed tap value,

a fixed frequency ratio, and we vary the number of non-zero operations we obtain the
following results.

Cost
CLB

Non-zero
ops

1

7

6

5

4

3

2

Fsys/fs=5

1

6

5
4

3
2

Fsys/fs=10

49

The CLB cost of the AU is greater than the cost of memory. The effect is seen when
we compare plot2 and plot3. The cost in plot2 is not linear as explained on the
previous note. The cost in plot3 corresponding to the register configuration increases
linearly given that the cost of the AU increases linearly with the number of non-zero
operations/tap, and this increase is much greater that the cost of memory.

Figures 28-38 show the same plots for different values of Fs/Fclk, input word width,
accumulator width(bit precision):

Figure Fr = Fs/Fclk Input Width Accum Width
28 15 16 24
29 10 16 24
30 2 16 24
31 15 16 32
32 10 16 32
33 15 8 16
34 10 8 16
35 15 8 12
36 10 8 12
37 15 16 40
38 10 16 40

50

Figure 28 Storage Cost Comparison

Figure 29 Storage Cost Comparison

51

Figure 30 Storage Cost Comparison

52

Figure 31 Storage Cost Comparison

Figure 32 Storage Cost Comparison

53

Figure 33 Storage Cost Comparison

Figure 34 Storage Cost Comparison

54

Figure 35 Storage Cost Comparison

Figure 36 Storage Cost Comparison

55

Figure 37 Storage Cost Comparison

Figure 38 Storage Cost Comparison

56

8. Performance Optimization for FPGA Architecture
The RAM based architecture puts some stringent constraints on the clocking schemes.
The input samples are arriving on the sample clock edges. The arithmetic operations are
happening on the system clock edges. The ratio Fs/Fclk (system clock speed/sample
clock speed), specifies the number of arithmetic (shift-add-accumulate) operations that
are possible before the next sample arrives. The input samples are stored away in the
RAMs. Depending on the Fs/Fclk ratio and the number of non-zero bits in the CSD
representation of the coefficients, there could be many parallel RAM/Arithmetic Units.
These are daisy chained. So, as the first RAM reads data, that particular input sample is
written to the next RAM (RAM 2).

Figure 39 RAM based architecture

However, depending on the number of non zero bits per coefficient and the way they are
organized, it could very well turn out that the Arithmetic Unit (AU) is looking for a
particular sample in a particular RAM, before it has arrived at that RAM. For example,
consider the case where the Fs/Fclk = 4 and the first coefficient has 6 non-zero bits. In
this case, the input data needs to be written to two RAMs simultaneously. The RAMs
cannot be daisy chained as above, but need to be connected as below. This tends to break
the “clean” daisy chain that would otherwise be possible, and also creates an architecture
that has very different implications in terms of timing due to the capacitive loading and

Figure 40 Load balancing of arithmetic units

input

Parallel Arithmetic Units

input

Parallel Arithmetic Units

57

routing due to more fanouts. This can become a serious problem if the same input fans
out to 3 or more RAMs. DSP Canvas, can automatically figure out when this kind of
connection is necessary. (Style 0 and Style 1 in the filter parameters menu control this).
However, by slightly manipulating the coefficients (manually), the first architecture can
be made to work. For instance, at a quantization of 8 bits, 0.002104759 has 10001001,
but by slightly changing this to 0.002120971, this has 10001011, and by changing this to
0.002075195, this has 10001000. This can significantly change the allocation of
coefficients to arithmetic units and could result in moving from style 1 to style 0 (the
clean daisy chain). In such a case, the COEFFICIENTS.d file can be manually changed to
reflect the new coefficient and VHDL generator rerun. This can significantly improve
timing and routing on the FPGA.

Figure 41 Filter modifications to reduce logic complexity

58

When the number of coefficients is small or when the Fs/Fclk ratio is small, then the
regular transpose form FIR can perform very well. This architecture does not involve
multiple clocks and the overhead of the RAM is not there. However, if the Fs/Fclk ratio is
very high (> 10) and if the filter is a large filter (> 50 taps), the RAM based architecture
can provide significant area savings. The CSD notation acts to minimize the number of
non-zero operations, so fewer parallel RAMS are needed.

In some cases, this could be a problem. For example, if the nz_ops (non zero bits), it not a
multiple of the number of RAMs, then the last AU is not fully utilized (figure 42). There
are clock cycles of the system clock that need to be ignored by the accumulator. When
the Fs/Fclk ratio is high, this can lead to significantly more hardware, in the form of
comparators and multiplexors. An alternative to avoid this is to make sure the nz_ops are
a multiple of Fs/Fclk ratio, which will reduce unnecessary logic.

From
previous
stage

Fs/Fclk = 4, Total
Nz_ops = 74.
Nz_ops for this AU
stage = 2. 2 clock
cycles of the Fs need
to be ignored.

If (3rd or 4th clock cycle of
the system clock), add 000

00
00

accumulator

Barrel shifter

Additional logic to
ignore 3rd and 4th clock
cycles. Comparators,
mux, etc are needed.

Figure 42 The last stage of the parallel AU

